

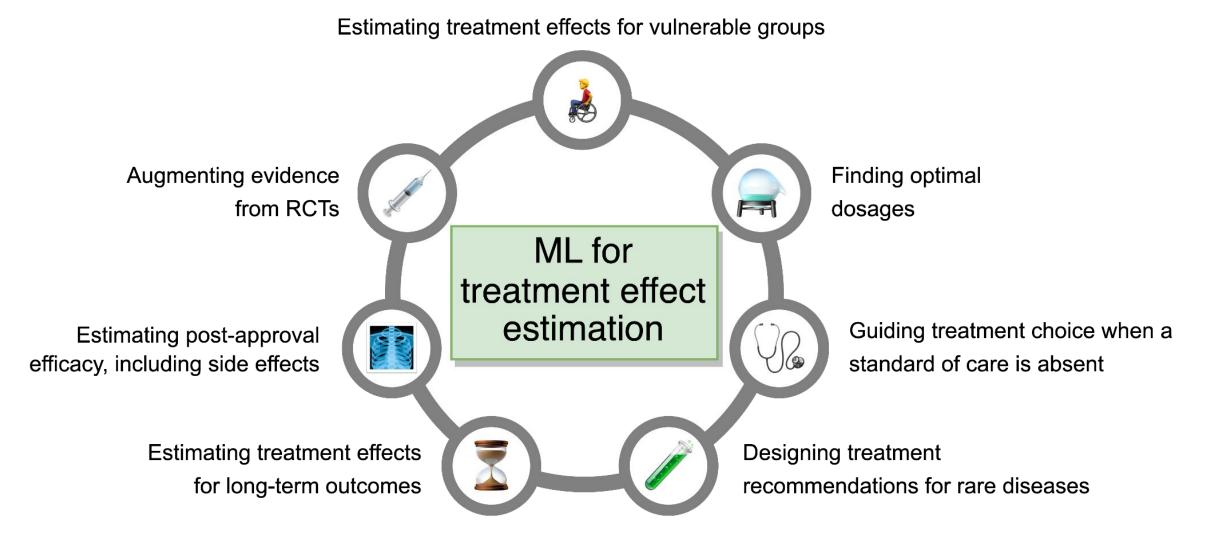
Munich Center for Machine Learning

Causal ML for predicting treatment outcomes

Valentyn Melnychuk

Institute of AI in Management LMU Munich https://www.ai.bwl.lmu.de

VISION Promises of Causal ML



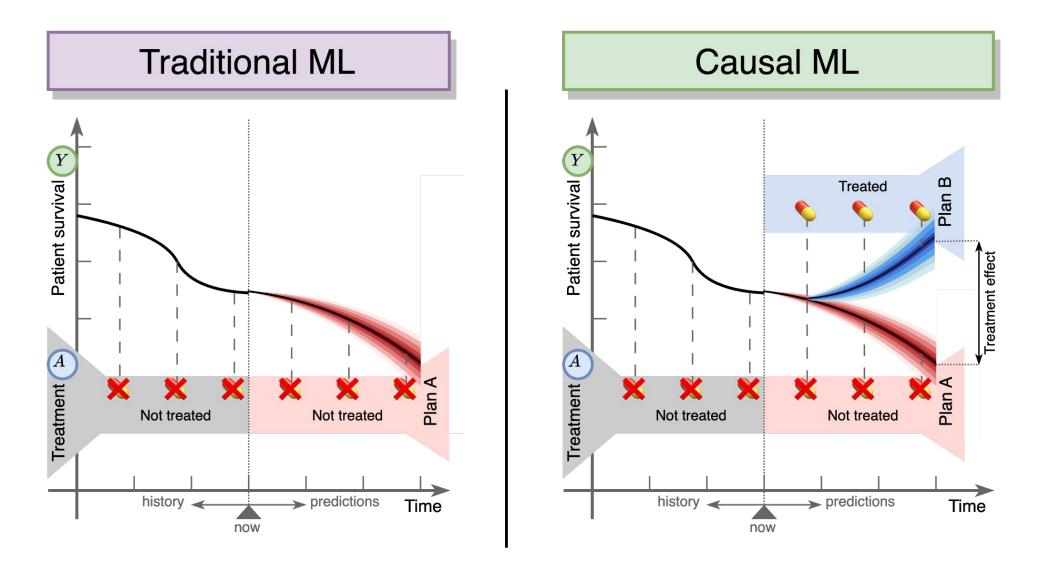
Munich Center for Machine Learning

Why do we need Causal ML in medicine?

Reference:

Feuerriegel, S., Frauen, D., Melnychuk, V., Schweisthal, J., Hess, K., Curth, A., Bauer, S., Kilbertus, N., Kohane, I.S. and van der Schaar, M., 2024. Causal machine learning for predicting treatment outcomes. <u>Nature Medicine</u>, 30(4), pp.958-968.

Moving from diagnostics to therapeutics: Estimating treatment effects with ML



TERMINOLOGY Real-world data (RWD) vs. real-world evidence (RWE) to support medicine

The US Food and Drug Administration (FDA) defines ^{1,2,3}:

Real-world data (RWD)

- Data relating to patient health status and the delivery of healthcare
- Examples: electronic health records (EHRs), claims and billing activities, disease registries, ...
- Naming: observational data (≠ experimental data)

Real-world evidence (RWE)

- Analysis of RWD regarding usage and effectiveness
- Vision: greater personalization of care
- Disclaimer: should not replace but augment RCTs
- 1) Real-World Evidence Where Are We Now? <u>https://www.nejm.org/doi/full/10.1056/NEJMp2200089</u>
- 2) Real-World Evidence What Is It and What Can It Tell Us? <u>https://www.nejm.org/doi/full/10.1056/nejmsb1609216</u>
- 3) Real-World Evidence and Real-World Data for Evaluating Drug Safety and Effectiveness https://jamanetwork.com/journals/jama/fullarticle/2697359

TERMINOLOGY Real-world data (RWD) vs. real-world evidence (RWE) to support medicine

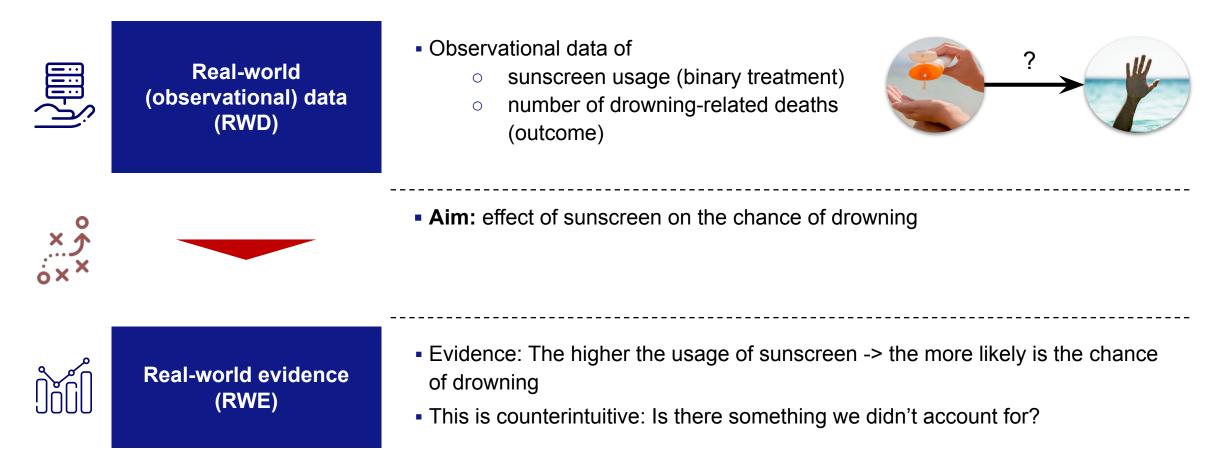
The US Food and Drug Administration (FDA) defines ^{1,2,3}:

Real-world evidence (RWE)

- Data relating to patient health status and the delivery of healthcare
- Examples: electronic health records (EHRs), claims and billing activities, disease registries, ...
- Naming: observational data (≠ experimental data)
- Aim: estimate treatment effectiveness
- Challenges: representativeness (selection bias), no proper randomization, ...
- Custom methodologies: target trial emulation, causal machine learning, …
- Analysis of RWD regarding usage and effectiveness
- Vision: greater personalization of care
- Disclaimer: should not replace but augment RCTs
- 1) Real-World Evidence Where Are We Now? <u>https://www.nejm.org/doi/full/10.1056/NEJMp2200089</u>
- 2) Real-World Evidence What Is It and What Can It Tell Us? <u>https://www.nejm.org/doi/full/10.1056/nejmsb1609216</u>
- 3) Real-World Evidence and Real-World Data for Evaluating Drug Safety and Effectiveness https://jamanetwork.com/journals/jama/fullarticle/2697359

Real-world data (RWD) vs. real-world evidence (RWE) to support medicine

Why is getting a meaningful RWE challenging?



Real-world data (RWD) vs. real-world evidence (RWE) to support medicine

Why is getting a **meaningful** RWE challenging? -> **Hidden confounding**

	Real-world data (RWD)	 Observational data of sunscreen usage (binary treatment) number of drowning-related deaths (outcome) intensity of sunlight (covariates) 	
×) o××		 Aim: effect of sunscreen on the chance of drowning for different intensities of sunlight 	
ĴŏĆĴ	Real-world evidence (RWE)	 Evidence: no association between sunscreen usage and chance of drowning in each group of sunlight Comparing with the previous slide: Intensity of sunlight is a confounder 	

12000

Application scenarios of RWD

RWD helps to guide decision-making (beyond RCTs):

... in the absence of a standard of care

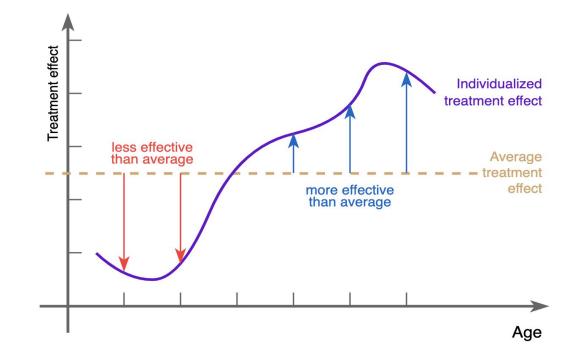
- Specific subtypes of diseases with no standard of care yet (e.g., oncology)
- New or experimental drugs (e.g., orphan drugs, is Biontech vs. Moderna vaccine more effective for subcohort X?)

2 ... in complex, high-dimensional decision problems

- Complex dosaging problems
- 3 ... when RCTs are unethical
 - Vulnerable populations (e.g., pregnant women)¹

... when a greater personalization is desired

- Highly granular subpopulations that cannot be really placed in RCTs (e.g., women, above 60, with comorbidity etc.)
- Personalization based on genome data (e.g., precision medicine)

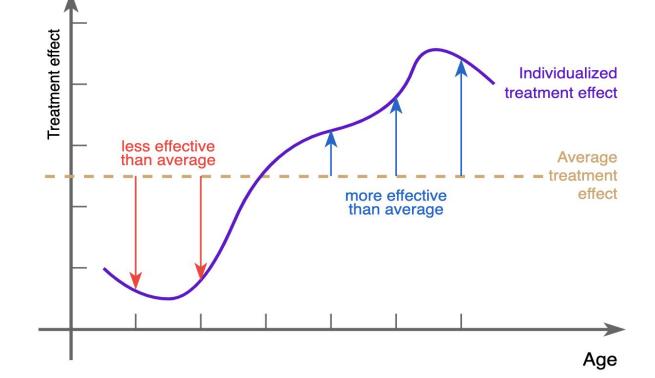


Understanding heterogeneity in the treatment effect

- Focus is often on average treatment effect (ATE)
- ATE is aggregated across the population
- ATE cannot tell whether a treatment works for some or not

 \rightarrow e.g., medication works only for women but not for men, but RCT was done with all patients

 NB: both RCTs and target trial emulation focus on ATEs



To personalize treatment recommendations, we need to understand the individualized treatment effect (ITE)

Munich Center for Machine Learning

Short introduction to causal machine learning

Reference:

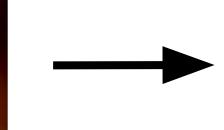
Feuerriegel, S., Frauen, D., Melnychuk, V., Schweisthal, J., Hess, K., Curth, A., Bauer, S., Kilbertus, N., Kohane, I.S. and van der Schaar, M., 2024. Causal machine learning for predicting treatment outcomes. Nature Medicine, 30(4), pp.958-968.

Ambiguity of the definition

"Causal ML" could be both:

Causal inference for machine learning

Causal inference concepts



ML / DL problems

- Explainability
- Fairness

• ...

- Algorithmic recourse
- Robustness / domain adaptation

Machine learning for causal inference

Causal inference problems

- Predicting treatment outcomes
- Counterfactual inference
- Causal discovery
- . . .

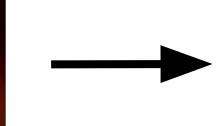
ML / DL tools

Ambiguity of the definition

"Causal ML" could be both:

Causal inference for machine learning

Causal inference concepts



ML / DL problems

- Explainability
- Fairness

• ...

- Algorithmic recourse
- Robustness / domain adaptation

Machine learning for causal inference

Causal inference problems

- Predicting treatment outcomes
- Counterfactual inference
- Causal discovery
- . . .

ML / DL tools

PRIMER Ladder of causation

	Level (Symbol)	Typical Activity	Typical Questions	Examples
	1. Association	Seeing	What is?	What does a symptom tell me
	P(y x)		How would seeing X	about a disease?
			change my belief in Y ?	What does a survey tell us
				about the election results?
Pearl's	2. Intervention	Doing	What if?	What if I take aspirin, will my
layers of	P(y do(x),z)	Intervening	What if I do X ?	headache be cured?
causation				What if we ban cigarettes?
	3. Counterfactuals	Imagining,	Why?	Was it the aspirin that
	$P(y_x x',y')$	Retrospection	Was it X that caused Y ?	stopped my headache?
			What if I had acted	Would Kennedy be alive had
			differently?	Oswald not shot him?
				What if I had not been smok-
				ing the past 2 years?

Causal Hierarchy Theorem: statistical inference for a layer requires the information from the same or higher layer. For the inference from lower layer data, we need to make **additional assumptions**.

¹ Elias Bareinboim et al. "On Pearl's hierarchy and the foundations of causal inference". In: Probabilistic and Causal Inference: The Works of Judea Pearl. Association for Computing Machinery, 2022, pp. 507–556.

PRIMER Ladder of causation

	Level (Symbol)	Typical Activity	Typical Questions	Examples	Traditional ML
	1. Association $P(y x)$	Seeing	What is? How would seeing X change my belief in Y ?	What does a symptom tell me about a disease? What does a survey tell us about the election results?	
Pearl's layers of causation	2. Intervention $P(y do(x), z)$	Doing Intervening	What if? What if I do X ?	headache be	ke aspirin, will my e cured? ban cigarettes?
		Imagining, Retrospection	Why? Was it X that caused Y? What if I had acted differently?	stopped my Would Kenn Oswald not	nedy be alive had shot him? Id not been smok-

Causal Hierarchy Theorem: statistical inference for a layer requires the information from the same or higher layer. For the inference from lower layer data, we need to make **additional assumptions**.

¹ Elias Bareinboim et al. "On Pearl's hierarchy and the foundations of causal inference". In: Probabilistic and Causal Inference: The Works of Judea Pearl. Association for Computing Machinery, 2022, pp. 507–556.

PRIMER Ladder of causation

	Level (Symbol)	Typical Activity	Typical Questions	Examples
	1. Association	Seeing	What is?	What does a symptom tell me
	P(y x)		How would seeing X change my belief in Y ?	about a disease? What does a source Man
				about the electi
Pearl's	2. Intervention	Doing	What if?	What if I take aspirin, will my
layers of	P(y do(x),z)	Intervening	What if I do X ?	headache be cured?
causation				What if we ban cigarettes?
	3. Counterfactuals	Imagining,	Why?	Was it the aspirin that
	$P(y_x x',y')$	Retrospection	Was it X that caused Y ?	stopped my headache?
			What if I had acted	Would Kennedy be alive had
			differently?	Oswald not shot him?
				What if I had not been smok-
				ing the past 2 years?

Causal Hierarchy Theorem: statistical inference for a layer requires the information from the same or higher layer. For the inference from lower layer data, we need to make **additional assumptions**.

¹ Elias Bareinboim et al. "On Pearl's hierarchy and the foundations of causal inference". In: Probabilistic and Causal Inference: The Works of Judea Pearl. Association for Computing Machinery, 2022, pp. 507–556.

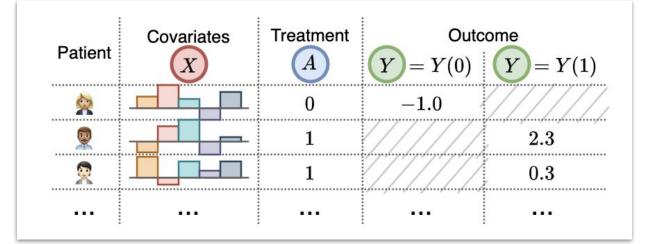
TREATMENT OUTCOMES

Predicting treatment outcomes (treatment effects or potential outcome)

Y[1]

- Given i.i.d. observational dataset
 - x covariates
 - (binary) treatments
 - Y continuous (factual) outcomes

 $\mathcal{D} = \{x_i, a_i, y_i\}_{i=1}^n \sim \mathbb{P}(X, A, Y)$



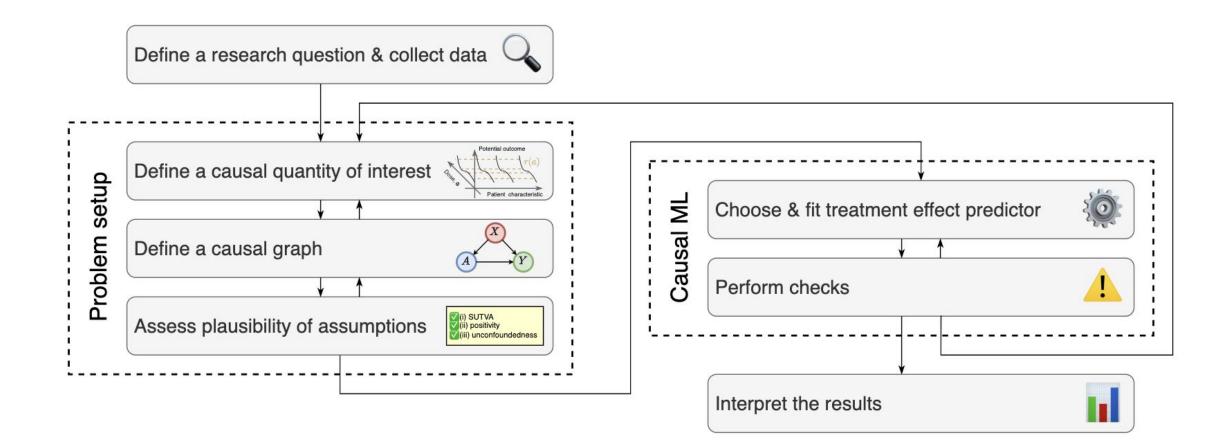
- We want to identify & estimate treatment outcomes:
 - treatment effects

$$Y[1] - Y[0]$$

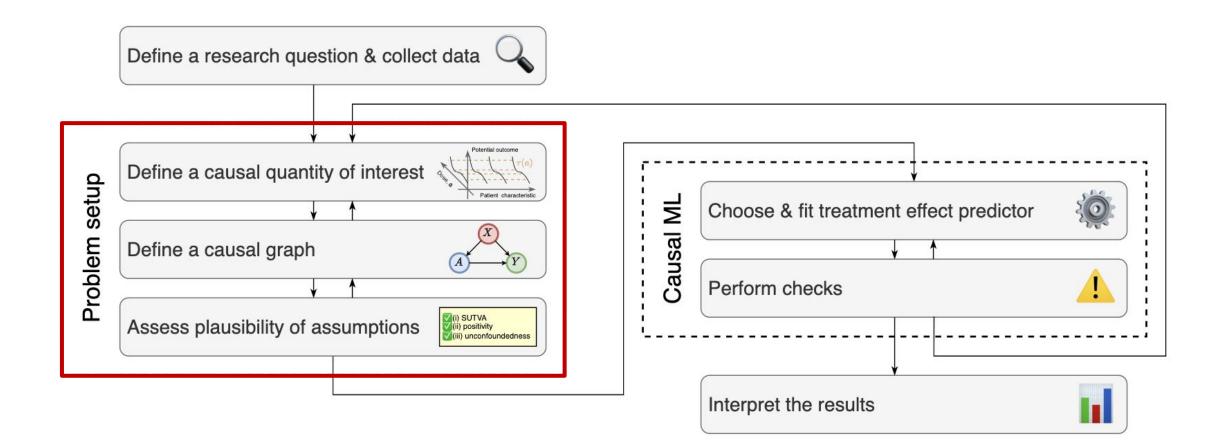
- potential outcomes (separately) Y[0]
- Fundamental problem: never observing both potential outcomes!

Potential outcomes Treatment effect Covariates Patient Y(1)Y(1) - Y(0)XY(0)...... ? ۲ 2

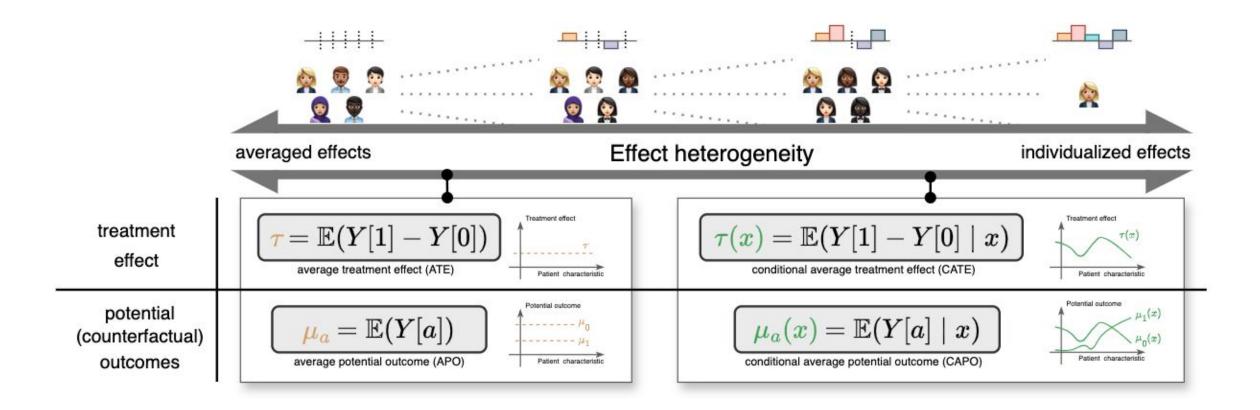
TREATMENT OUTCOMES Causal ML Workflow



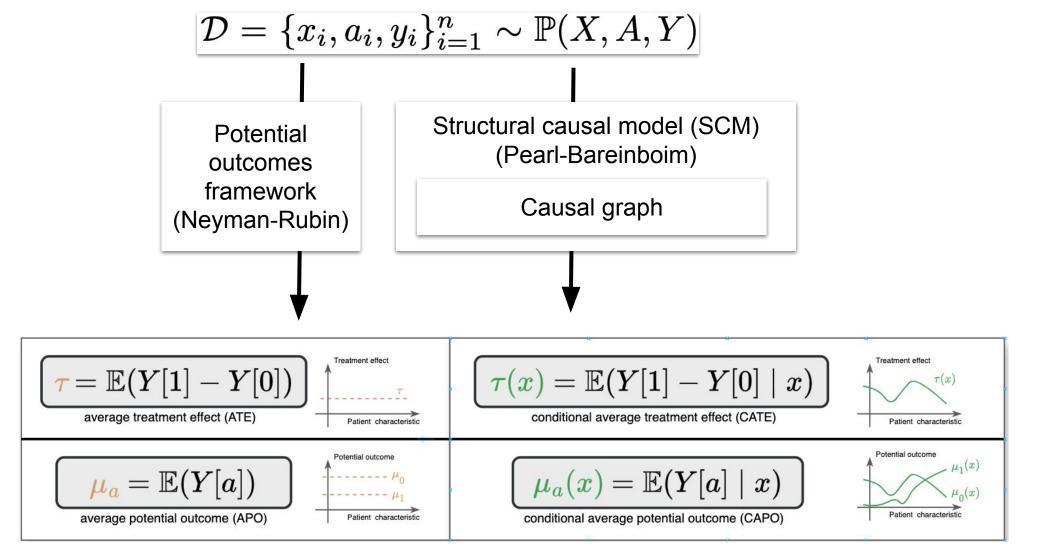
TREATMENT OUTCOMES Causal ML Workflow



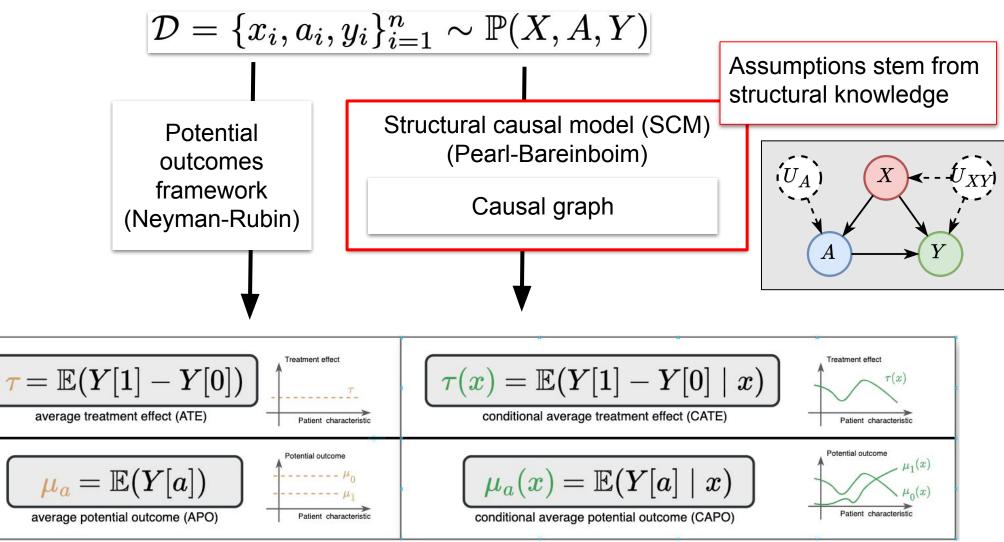
PROBLEM SETUP Causal quantities of interest



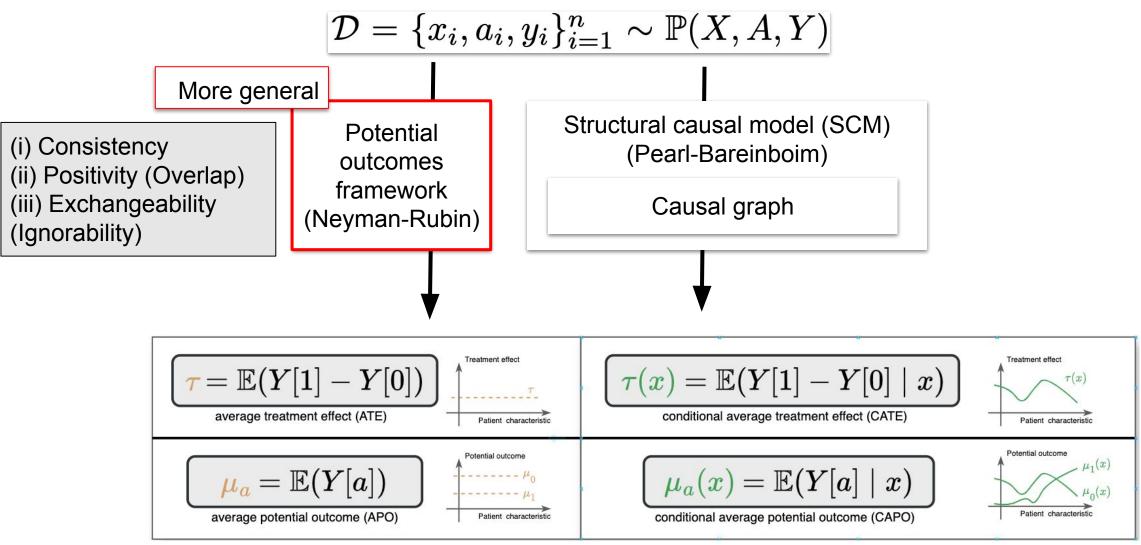
PROBLEM SETUP Assumption frameworks



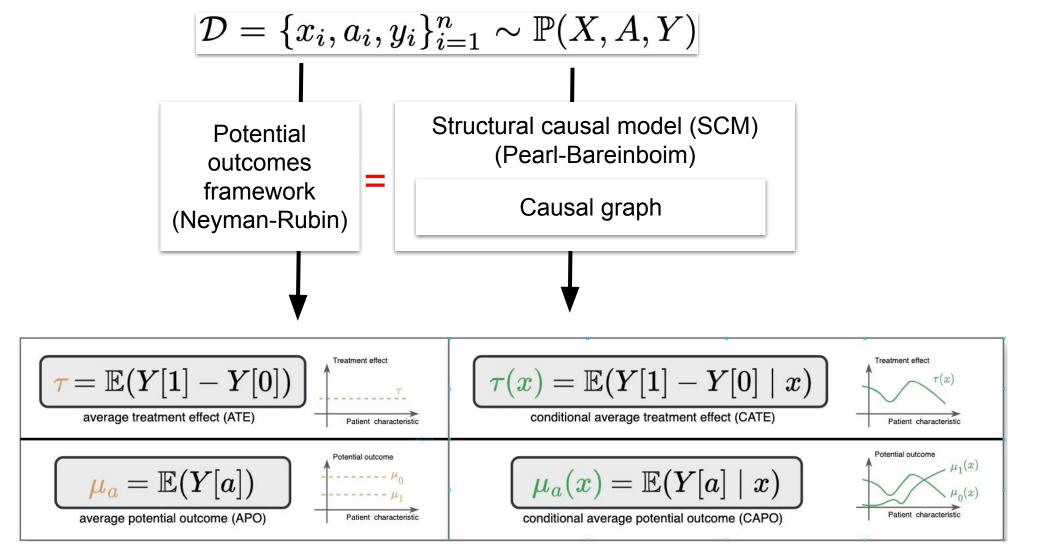
PROBLEM SETUP Assumption frameworks: SCMs and causal graphs



PROBLEM SETUP Assumption frameworks: Potential outcomes framework



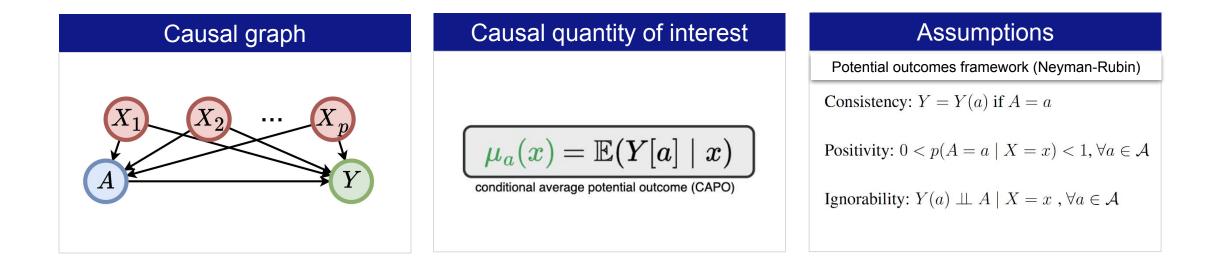
PROBLEM SETUP Assumption frameworks



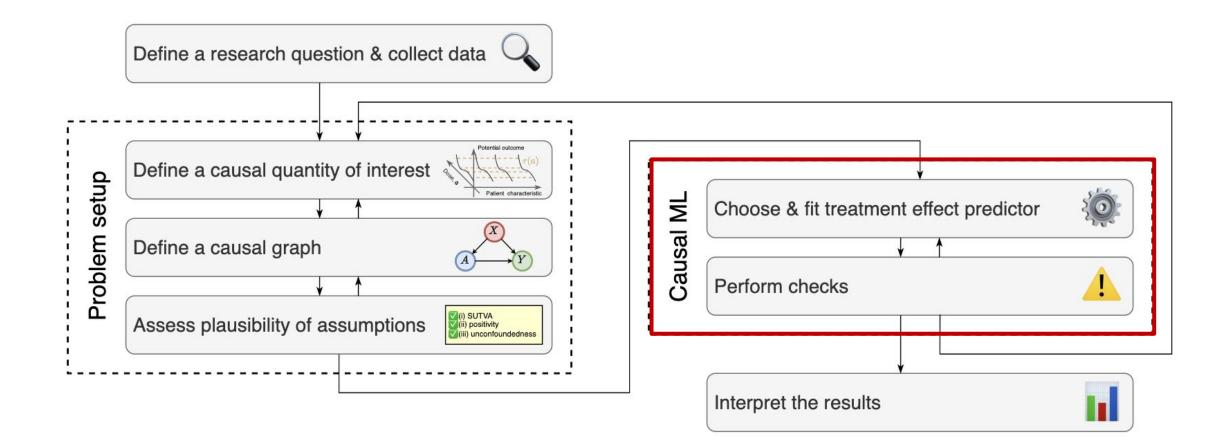
PROBLEM SETUP Example of a case study

Aim: estimate heterogeneous treatment effect of development aid on SDG outcomes

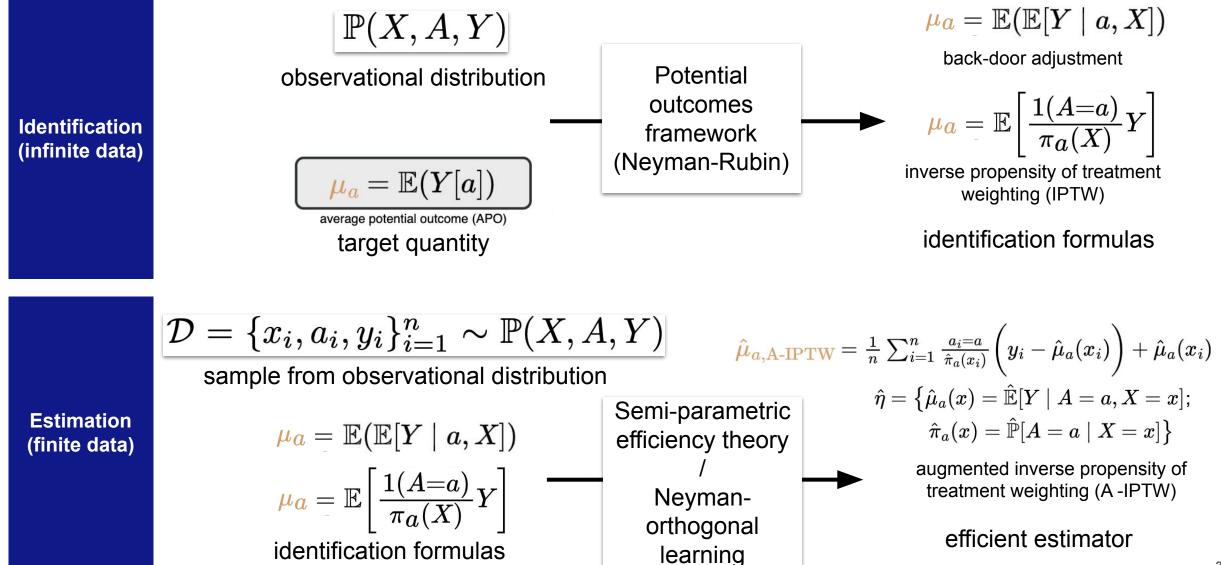
- Treatment A: development aid earmarked to end the HIV/AIDS epidemic
- Outcome Y: relative reduction in HIV infection rate
- Covariates X: control for differences in country characteristics



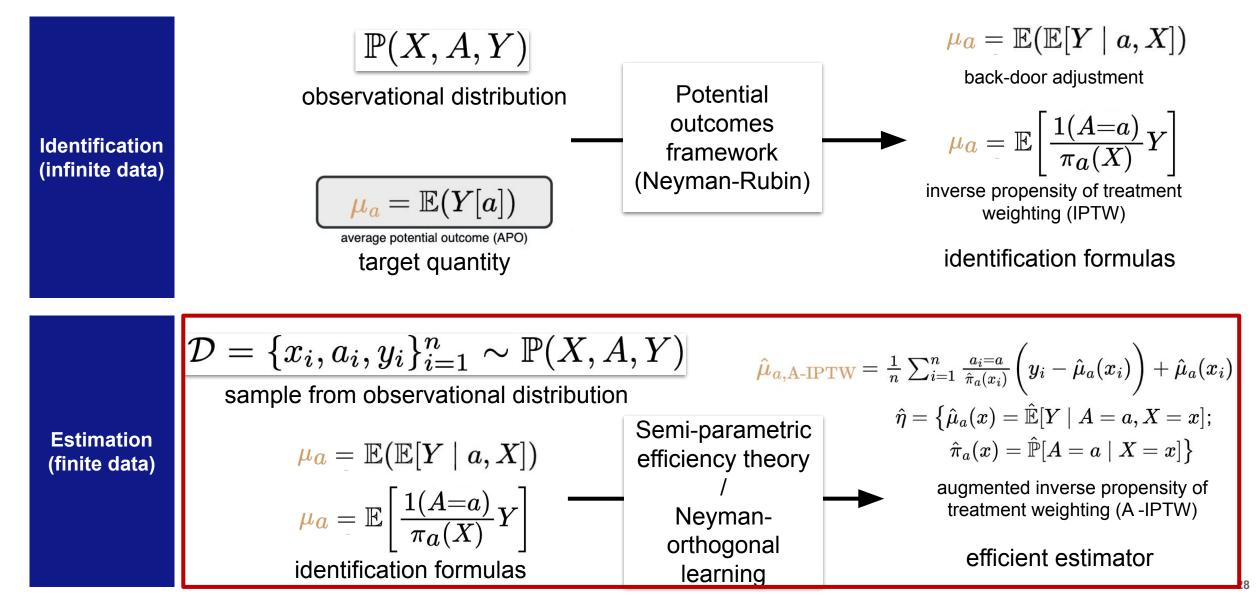
TREATMENT OUTCOMES Causal ML Workflow

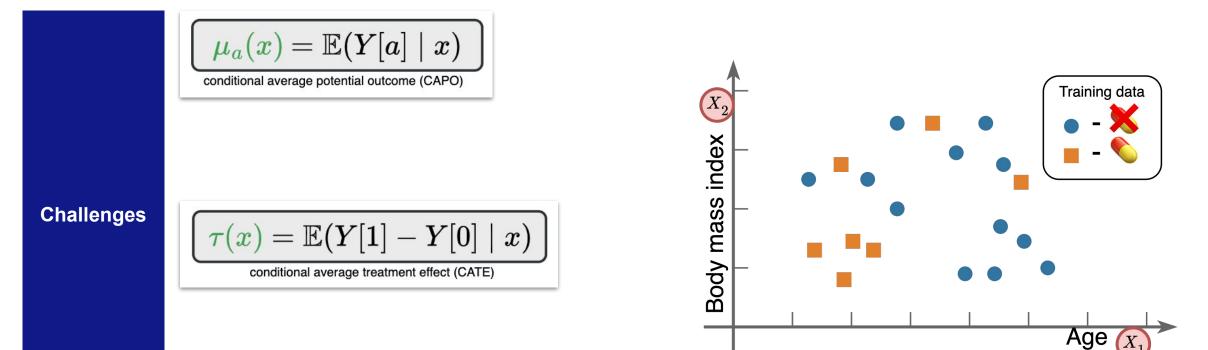


CAUSAL ML Identification vs. estimation / learning



CAUSAL ML Identification vs. estimation / learning





 $iggl[egin{array}{c} \mu_a(x) = \mathbb{E}(Y[a] \mid x) \end{array} iggr]$

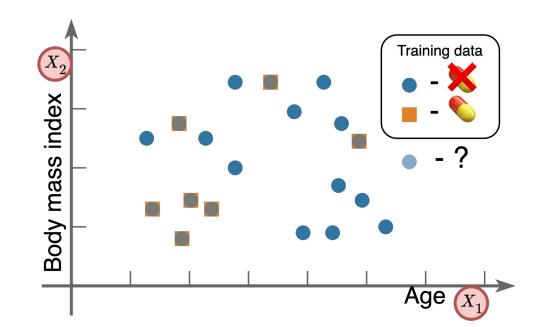
- conditional average potential outcome (CAPO)
- Selection bias: parts of the population rarely gets treated

Challenges

$$au(x) = \mathbb{E}(Y[1] - Y[0] \mid x)$$

conditional average treatment effect (CATE)

 Selection bias: parts of the population rarely gets treated



 $igg[\mu_a(x) = \mathbb{E}(Y[a] \mid x) igg]$

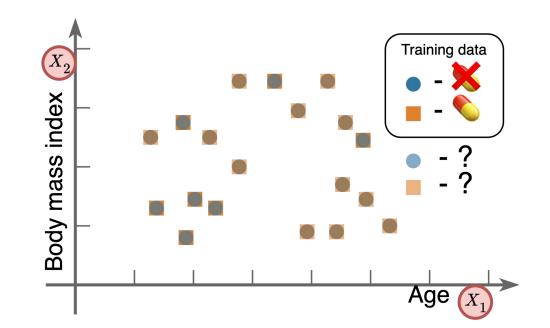
- conditional average potential outcome (CAPO)
- Selection bias: parts of the population rarely gets treated

Challenges

$$au(x) = \mathbb{E}(Y[1] - Y[0] \mid x)$$

conditional average treatment effect (CATE)

- Selection bias: parts of the population rarely gets treated
- Fundamental problem: never observing a difference of potential outcomes



 $igg[egin{array}{c} \mu_a(x) = \mathbb{E}(Y[a] \mid x) \end{array} igg]$

- conditional average potential outcome (CAPO)
- Selection bias: parts of the population rarely gets treated

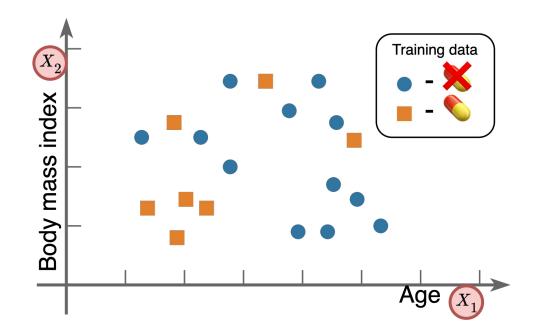
Challenges

$$au(x) = \mathbb{E}(Y[1] - Y[0] \mid x)$$

conditional average treatment effect (CATE)

- Selection bias: parts of the population rarely gets treated
- Fundamental problem: never observing a difference of potential outcomes
- How to effectively address selection bias?

Open problems How to incorporate inductive biases, e.g., regularize CAPO / CATE models?



causal ml Methods

Metalearners - Meta-learners (Kunzel 2019) are model-agnostic methods for CATE estimation

Can be used for treatment effect estimation in combination with an arbitrary ML model of choice (e.g., a decision tree, a neural network)

Model-based learners

- Model-specific methods make adjustments to existing ML models to address statistical challenges arising in treatment effect estimation
- Prominent examples are the causal tree (Athey 2016) and the causal forest (Wager 2018, Athey 2019)
- Others adapt representation learning to leverage neural networks (Shalit 2017, Shi 2019)

^{1.} Künzel, Sören R., et al. "Metalearners for estimating heterogeneous treatment effects using machine learning." Proceedings of the national academy of sciences 116.10 (2019): 4156-4165.

^{2.} Athey, Susan, and Guido Imbens. "Recursive partitioning for heterogeneous causal effects." Proceedings of the National Academy of Sciences 113.27 (2016): 7353-7360.

^{3.} Athey, Susan, and Stefan Wager. "Estimating treatment effects with causal forests: An application." Observational studies 5.2 (2019): 37-51.

^{4.} Shalit, Uri, Fredrik D. Johansson, and David Sontag. "Estimating individual treatment effect: generalization bounds and algorithms." International conference on machine learning. PMLR, 2017.

^{5.} Shi, Claudia, David Blei, and Victor Veitch. "Adapting neural networks for the estimation of treatment effects." Advances in neural information processing systems 32 (2019).

causal ml Methods

Moto	One-stage learners	 "Plug-in learners": fit a single regression model with a treatment as an input or two regression models for each treated and control sub-groups Examples: S-learner and T-learner 	
Meta- learners	Two-stage learners	 Two-stages of learning: derive and estimate pseudo-outcomes as surrogates, which has the same expected value as the CATE Examples: DR-learner and R-learner 	
Model-based learners	 Model-specific methods make adjustments to existing ML models to address statistical challenges arising in treatment effect estimation Prominent examples are the causal tree (Athey 2016) and the causal forest (Wager 2018, Athey 2019) Others adapt representation learning to leverage neural networks (Shalit 2017, Shi 2019) 		

^{1.} Künzel, Sören R., et al. "Metalearners for estimating heterogeneous treatment effects using machine learning." Proceedings of the national academy of sciences 116.10 (2019): 4156-4165.

^{2.} Athey, Susan, and Guido Imbens. "Recursive partitioning for heterogeneous causal effects." Proceedings of the National Academy of Sciences 113.27 (2016): 7353-7360.

^{3.} Athey, Susan, and Stefan Wager. "Estimating treatment effects with causal forests: An application." Observational studies 5.2 (2019): 37-51.

^{4.} Shalit, Uri, Fredrik D. Johansson, and David Sontag. "Estimating individual treatment effect: generalization bounds and algorithms." International conference on machine learning. PMLR, 2017.

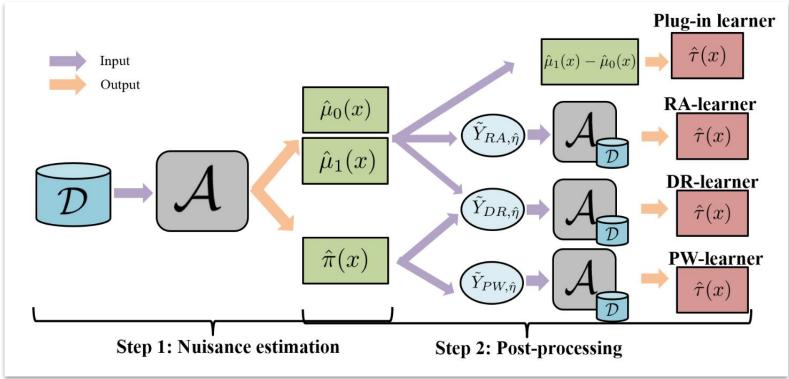
^{5.} Shi, Claudia, David Blei, and Victor Veitch. "Adapting neural networks for the estimation of treatment effects." Advances in neural information processing systems 32 (2019).

CAUSAL ML One-stage and two-stage meta-learners

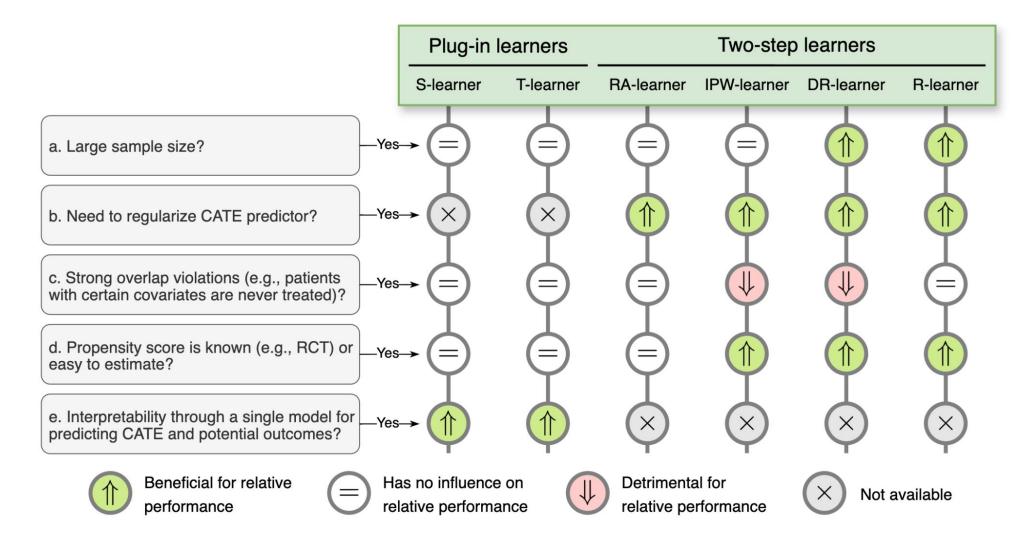
Example: meta-learners for CATE

$$egin{aligned} au(x) = \mathbb{E}(Y[1] - Y[0] \mid x) \ & ext{conditional average treatment effect (CATE)} \end{aligned}$$

Method: Using any ML model to fit relevant parts of the observed distribution, namely, **nuisance functions**. Then, we can use the nuisance functions estimators for the final CATE model.



CAUSAL ML Comparison of meta-learners

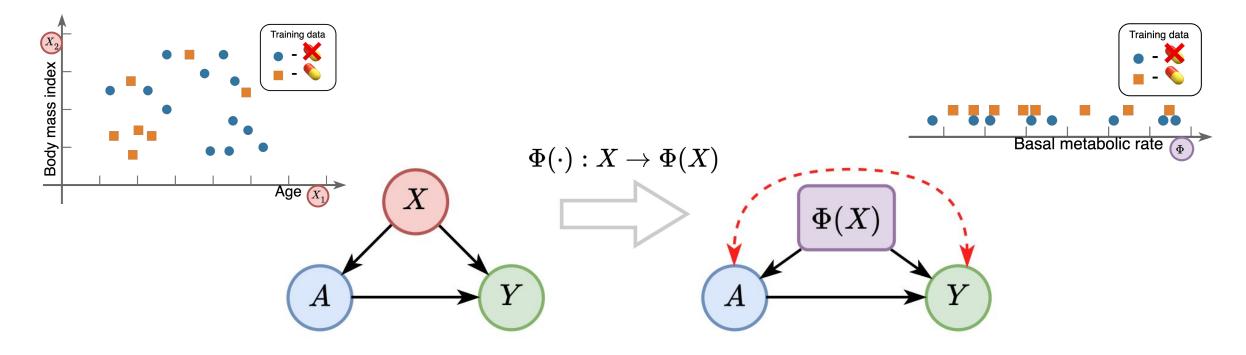


CAUSAL ML Model-based learners: Representation learning

Example: TarNET / CFRNet for CATE

$$au(x) = \mathbb{E}(Y[1] - Y[0] \mid x)$$
conditional average treatment effect (CATE)

Method: Learning a low-dimensional (balanced) representation Φ () of high-dimensional covariates. Then, we can fit a CATE model based on the representations.

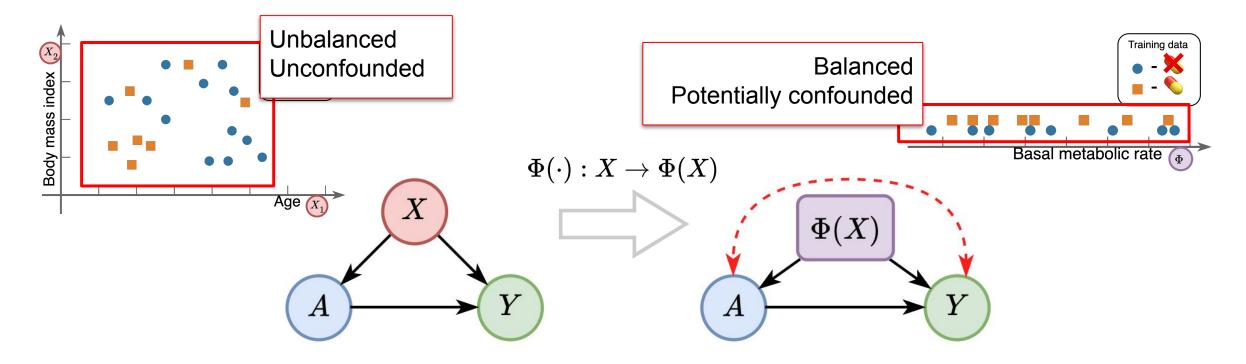


CAUSAL ML Model-based learners: Representation learning

Example: TarNET / CFRNet for CATE

$$au(x) = \mathbb{E}(Y[1] - Y[0] \mid x)$$
conditional average treatment effect (CATE)

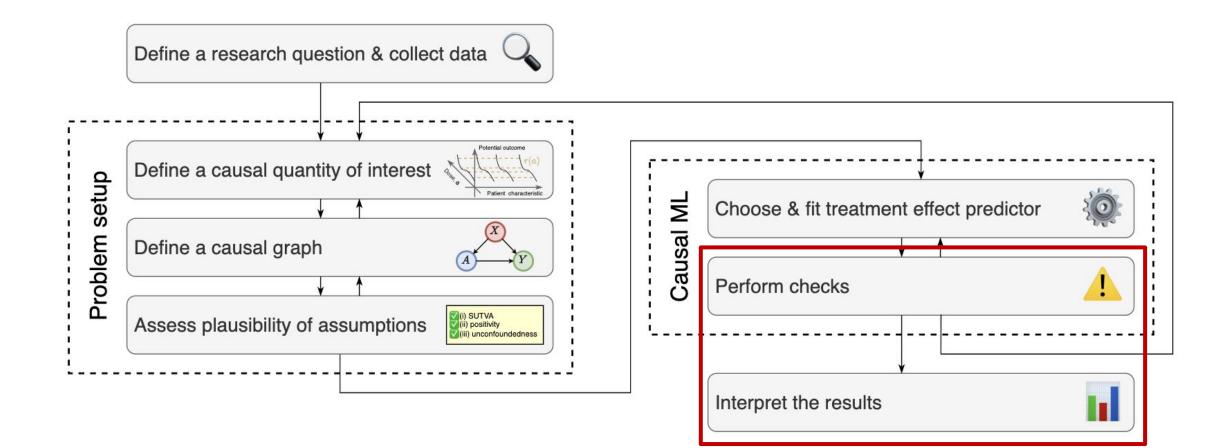
Method: Learning a low-dimensional (balanced) representation Φ () of high-dimensional covariates. Then, we can fit a CATE model based on the representations.



Munich Center for Machine Learning

Where we are (and what is still needed): Current state of causal ML research

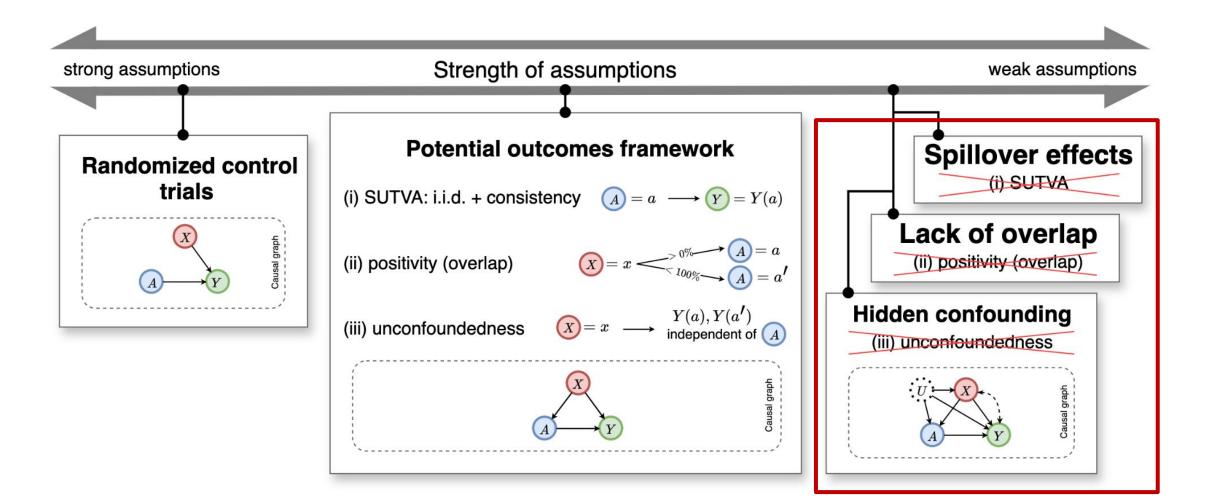
PRIMER Causal ML Workflow



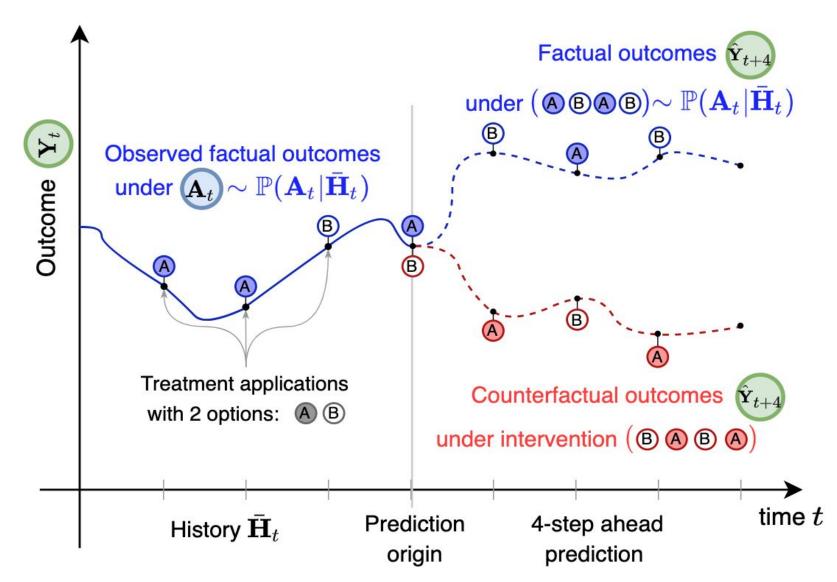
CAUSAL ML Extensions & Open research problems

1 Model validity	 Selection and validation of CATE models Unlike traditional ML, we do not have a ground truth validation subset Robustness checks wrt. violation of assumptions Sensitivity models Spillover effects 	Hidden confounding (iii) unconfoundedness
2 Flexibility	 Extensions to more complicated settings continuous / high-dimensional treatments time-varying potential outcomes and treatment effects Data fusion from multiple environments Constrained ML: interpretability, privacy enforcement 	Observed factual outcomes under $\widehat{\mathbf{A}} \sim \mathbb{P}(\mathbf{A}_t \widehat{\mathbf{H}}_t)$ Image: Served factual outcomes under $\widehat{\mathbf{A}} \sim \mathbb{P}(\mathbf{A}_t \widehat{\mathbf{H}}_t)$ Image: Served factual outcomes under intervention (Image: Served factu
3 Uncertainty quantification	 Uncertainty quantification uncertainty of estimation (aka confidence intervals) predictive uncertainty (aka predictive intervals) 	Stuard to seven the stimate Point estimate Point estimate Stuard Point estimate

EXTENSIONS & OPEN RESEARCH QUESTIONS Model validity: Robustness checks wrt. violation of assumptions

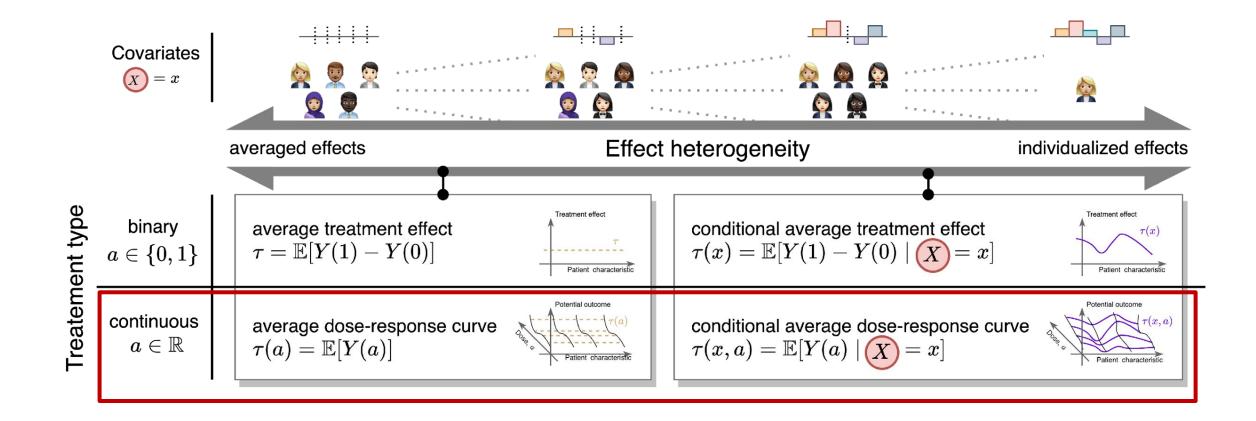


EXTENSIONS & OPEN RESEARCH QUESTIONS Flexibility: Causal ML for predicting outcomes over time

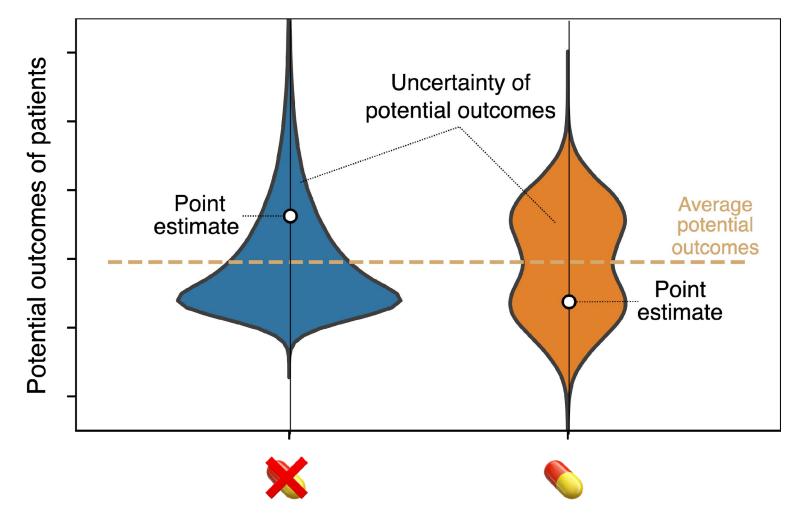


Melnychuk, Valentyn, Dennis Frauen, and Stefan Feuerriegel. "Causal transformer for estimating counterfactual outcomes." International Conference on Machine Learning. PMLR, 2022.

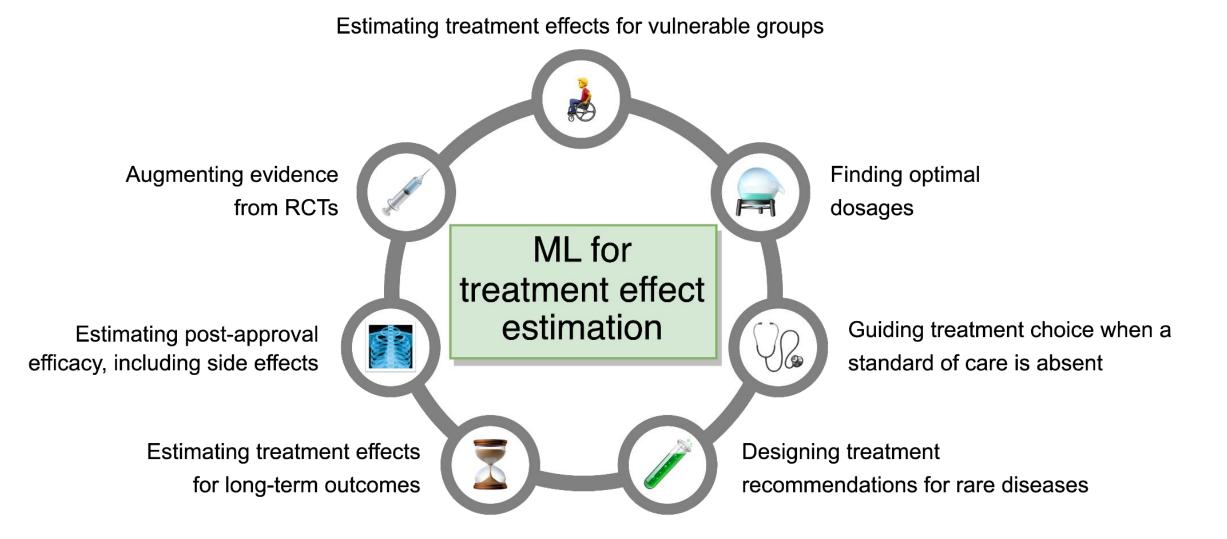
EXTENSIONS & OPEN RESEARCH QUESTIONS Flexibility: Continuous / high-dimensional treatments



EXTENSIONS & OPEN RESEARCH QUESTIONS Uncertainty quantification



VISION Promises of Causal ML



LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

LMU MUNICH

SCHOOL OF MANAGEMENT INSTITUTE OF ALIN MANAGEMENT

Valentyn Melnychuk

Institute of AI in Management LMU Munich https://valentyn1997.github.io/ https://www.ai.bwl.lmu.de